FMDB Transactions on Sustainable Energy Sequence

Comparative Analysis of Benchmark Optimisation and Real-World **Applications**

Saman M. Almufti^{1,*}, Awaz Ahmed Shaban²

^{1,2}Department of Information Technology, Akre Technical College of Informatics, Akre University for Applied Sciences, Akre, Duhok, Iraq. saman.almofty@gmail.com¹, awaz.amedy1@gmail.com²

Abstract: Optimisation plays a pivotal role across science, engineering, and computational disciplines, serving as the foundation for designing efficient systems and solving complex decision-making problems. While benchmark optimisation functions provide standardised and controlled environments for testing new algorithms, real-world applications introduce uncertainties, high dimensionality, and intricate constraints that benchmarks cannot fully capture. This paper presents a comparative analysis of benchmark optimisation functions and real-world optimisation applications, focusing on their mathematical formulations, algorithmic challenges, and performance evaluation. Case studies in vehicle dynamics (ABS braking optimisation), finite element model updating (FEMU using Derringer's function), and crane-load optimal control are examined to illustrate the transition from synthetic benchmarks to practical engineering domains. The findings reveal that although benchmark functions are indispensable for preliminary testing, real-world problems demand adaptive, robust, and hybrid metaheuristic strategies to address nonlinearities, noise, and operational constraints. The paper contributes by bridging theoretical and practical perspectives, emphasising the importance of parameter transferability, error reduction, and algorithm customisation in achieving reliable optimisation outcomes.

Keywords: Benchmark Optimisation; Real-World Applications; Metaheuristic Algorithms; Finite Element Model Updating (FEMU); Vehicle Dynamics; ABS Braking; Crane-Load Control.

Received on: 06/06/2024, Revised on: 15/08/2024, Accepted on: 20/10/2024, Published on: 09/06/2025

Journal Homepage: https://www.fmdbpub.com/user/journals/details/FTSES

DOI: https://doi.org/10.69888/FTSES.2025.000417

Cite as: S. M. Almufti and A. A. Shaban, "Comparative Analysis of Benchmark Optimisation and Real-World Applications," FMDB Transactions on Sustainable Energy Sequence, vol. 3, no. 1, pp. 51–61, 2025.

Copyright © 2025 S. M. Almufti and A. A. Shaban, licensed to Fernando Martins De Bulhão (FMDB) Publishing Company. This is an open access article distributed under CC BY-NC-SA 4.0, which allows unlimited use, distribution, and reproduction in any medium with proper attribution.

1. Introduction

Optimisation has emerged as a cornerstone methodology across diverse domains, from computational sciences and artificial intelligence to engineering and economics. Its central objective is to identify the best possible solution to a given problem under defined constraints. To assess the performance of optimisation algorithms, researchers frequently employ benchmark functions—synthetic test problems with known optima and controlled landscapes. These functions, characterised by features such as multimodality, separability, and scalability, provide a systematic and replicable environment for evaluating convergence speed, robustness, and accuracy [1]. However, the reliance on benchmarks alone does not fully reflect the realities

^{*}Corresponding author.

of real-world optimisation problems. Practical applications often involve incomplete data, nonlinear constraints, and high-dimensional parameter spaces, which make direct transferability of algorithmic performance from benchmarks problematic. For instance, an algorithm that converges rapidly on synthetic functions may fail to achieve stability in a noisy structural engineering task or a control system constrained by safety requirements. This discrepancy highlights a critical research gap: the need to bridge the methodological divide between synthetic benchmarks and real-world applications [2]. The present study addresses this gap by conducting a comparative analysis of benchmark optimisation problems and representative real-world case studies. Specifically, three engineering applications are investigated:

- Vehicle dynamics optimisation, with a focus on anti-lock braking system (ABS) performance;
- Finite element model updating (FEMU), employing Derringer's desirability function for error minimisation, and
- Crane-load optimal control, formulated under dynamic and non-convex constraints.

By analysing these problems side by side, the paper demonstrates how benchmark-inspired formulations can be extended and adapted to address practical challenges. Furthermore, the study evaluates the performance of various metaheuristic algorithms, highlighting their adaptability, limitations, and hybridisation potential in complex scenarios. This work makes three primary contributions:

- It provides a structured comparison between benchmark and real-world optimisation problems, emphasising differences in data availability, objective formulation, and evaluation metrics.
- It introduces case-based mathematical formulations that illustrate how theoretical models can be adapted for engineering applications.
- It offers empirical insights into algorithmic performance, showing how metaheuristic methods such as CMA-ES, ABC, and hybrid PSO-DE achieve significant improvements in braking distance, error reduction, and control efficiency.

Through this comparative perspective, the paper underscores the necessity of algorithm customisation and adaptive tuning to ensure reliable outcomes beyond benchmark conditions.

2. Benchmark Problems in Optimisation

Benchmark problems in optimisation are synthetic test functions or objective formulations designed to evaluate and compare the performance of optimisation algorithms. These problems are developed with known global optima and well-understood landscapes. Their utility lies in providing a standardised environment where performance metrics such as convergence speed, robustness, and accuracy can be rigorously compared [3].

2.1. Characteristics of Benchmark Functions

Benchmark functions typically exhibit diverse features such as multimodality, non-convexity, and high dimensionality. For instance, some benchmark functions are devised to simulate rugged landscapes with many local optima, while others introduce steep ridges or deceptive valleys. The dynamic balance between exploration (diversification) and exploitation (intensification) is central to understanding algorithm performance on these tests. In the comparative study of meta-heuristics optimisation algorithms, seven different techniques were evaluated on eleven benchmark functions exhibiting distinct difficulties. Metrics such as convergence speed and statistical significance (with p-values < 0.05) were employed to compare their performance [4]; [5].

2.2. Mathematical Formulations in Benchmark Objective Functions

Many benchmark problems are formulated with mathematical equations that serve as surrogates for more complex real-world objectives. One example comes from the development of benchmark objective-function formulations for finite element model updating. In this framework, Derringer's function is employed to combine multiple individual responses into a single overall desirability function. The individual responses typically represent natural frequencies or modal assurance criteria (MAC values) and are transformed into individual desirability functions by following a piecewise formulation such as Hussain et al. [6]:

$$d_{i(\omega_{i})} = \begin{cases} \frac{\left(\omega_{i} - \omega_{i,min}\right)}{\left(\omega_{i,T} - \omega_{i,min}\right)}, \text{if } \omega_{i,min} \leq \omega_{i} \leq \omega_{i,T} \\ \frac{\left(\omega_{i,mak} - \omega_{i}\right)}{\left(\omega_{i,mak} - w_{i,T}\right)}, \text{if } w_{i,T} \leq \omega_{i} \leq \omega_{i,mak} \\ 0, \text{otherwise} \end{cases}$$

Where ω i represents the response predicted by the response surface model (RS) for the ith natural frequency; ω i, T is the target value (often the simulated experimental value); and ω i, min and ω i, max are lower and upper bounds defined as percentages of ω i, T. Such a formulation converts the multiobjective optimisation problem into the maximisation of a single overall desirability function D given by the geometric mean:

$$D = \left(\prod_{i=1}^{n} d_i(w_i) \right)^{\frac{1}{n}}$$

If weights wi>0 are used to reflect the different importance of responses, use the weighted geometric mean.

$$D = \textstyle \prod_{i=1}^n d_i(w_i)^{w_i} \quad \text{or equivalent to} \quad D \ = \ (\prod_{i=1}^n d_i(w_i)^{w_i})^{\frac{1}{\sum_{i=1}^n w_i}}$$

So that $D \in [0,1]$ and a higher D indicates better overall agreement with the targets. It is common to express the lower/upper limits as percentages of the target:

$$\omega_{i,min} = (1 - \rho i) \omega i, T,$$

$$\omega_{i,max} = (1 + \sigma i) \omega i, T$$

With ρi , $\sigma i \in (0,1)$ chosen according to acceptable tolerances.

2.3. Representative Cases of Benchmark Functions

A comparative study of meta-heuristics on benchmark functions has shown that algorithms such as Differential Evolution (DE) and Travelling Thief Problem (TTP) model variants can outperform others in convergence speed and reliability. These benchmarks are constructed to simulate the inherent difficulties encountered in real-world problems; for example [7]:

- **Multimodal Problems:** Problems where the objective landscape contains several peaks and valleys, challenging the algorithm to avoid local optima.
- **Non-separable Functions:** Functions where the decision variables interact in a complex manner, necessitating global search techniques.
- **High Dimensionality Issues:** Problems involving a large number of decision variables that test the scalability of an algorithm.

The Travelling Thief Problem (TTP) is one such benchmark that combines aspects of routing and packing problems. The application of optimisation in the context of industrial challenges has been discussed, and various researchers have developed variants to test the resilience and adaptability of modern optimisers. Below is a Table summarising key characteristics of selected benchmark problems, highlighting the objective landscape features, dimensionality, and typical application in performance evaluations.

Table 1: Summary of benchmark optimisation problems and their characteristics

Benchmark Problem	Benchmark Problem Landscape Characteristics		Typical Algorithm Evaluation
Multimodal Synthetic	Many local optima, rugged	Low to High	DE, PSO, TPO
Derringer's Function	Multiobjective, desirability	Moderate	Response Surface Method, CMA-ES
Travelling Thief Problem	Combinatorial, hybrid routing	High	Meta-heuristics, hybrid approaches
Electrostatic Precipitator	Expensive simulation-based,	Moderate	Specialised discrete optimisers
Problem	discrete		-

Table 1 illustrates that benchmark problems are diverse in nature and are used to systematically evaluate optimisation algorithms under controlled conditions. Common performance metrics include convergence rate (measured typically as iterations or runtime until reaching a predefined threshold), robustness across multiple runs, and the statistical significance of the outcomes (often assessed via ANOVA tests). For example, convergence comparisons using ANOVA tests have demonstrated significant differences between optimisation methods, where p-values lower than 0.05 indicate statistical significance in performance differences4. These metrics are essential for validating algorithm improvements and guiding further research in optimisation methods.

3. Real-World Optimisation Applications

Real-world optimisation problems differ significantly from synthetic benchmark functions. They incorporate uncertainties, complex constraints, real operating conditions, and often high-dimensional parameter spaces that are not neatly captured by benchmark objective functions. In this section, we explore several representative real-world cases, including vehicle dynamics optimisation, finite element model updating, and control problems in engineering [8].

3.1. Vehicle Dynamics and Braking Performance

One clear example of a real-world optimisation problem arises in the context of vehicle dynamics, especially concerning braking performance. Anti-lock Braking Systems (ABS) are designed to prevent wheel lock-up during emergency braking scenarios by adjusting the brake pressure. An industry-standard manoeuvre for evaluating a vehicle's braking performance involves an emergency straight-line full-stop braking manoeuvre with ABS fully engaged [9]. The optimisation challenge in this scenario is to find the optimal setting of ABS parameters to minimise the braking distance. The braking distance is computed as the integral of the vehicle's longitudinal velocity v(t) over time, from the initial velocity vs=100 km/h at time ts to ve=0 km/h at time te:

Braking Distance =
$$\int_{ts}^{te} v(t) dt$$

The problem formulation entails simulating different combinations of ABS controller parameters and learning the functional relationship between these parameters and the resulting braking distance y(x). Optimisation algorithms, such as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), have been shown to significantly improve performance when parameters tuned on artificial benchmark functions are transferred to these real-world vehicle dynamics problems. Furthermore, the vehicle brake system involves nonlinearities and constraints similar to those inherent in benchmark formulations but with added complexities such as varying road conditions, tyre friction coefficients, and mechanical limitations. Researchers have demonstrated that transferring the parameters of CMA-ES tuned on benchmark functions can result in notable performance improvement compared to default CMA-ES settings when applied to the real-world braking problem.

3.2. Finite Element Model Updating in Structural Engineering

Structural engineering problems frequently require updating of finite element (FE) models to match real-world dynamic responses. One prominent application is in the domain of model updating for structures such as beams or other load-bearing components. An example comes from the research on objective-function formulations for Derringer's function-based finite element model updating (FEMU) [10]. In this process, the goal is to update physical parameters (such as the elastic moduli of different beam elements) so that the FE model's predicted natural frequencies and modal assurance criterion (MAC) values closely match those observed in simulated experimental (SE) tests. The optimisation objective is formulated by defining individual desirability functions for each response variable and then combining them into an overall desirability function. For example, the individual desirability function for the first natural frequency $\omega 1\omega 1$ is designed as:

$$d_1 = \begin{cases} \frac{\left(\omega_1 - \omega_{1,min}\right)}{\left(\omega_{1,T} - \omega_{1,min}\right)}, \text{if } \omega_{1,min} \leq \omega_1 \leq \omega_{1,T} \\ \frac{\left(\omega_{1,mak} - \omega_1\right)}{\left(\omega_{1,mak} - w_{1,T}\right)}, \text{if } w_{1,T} \leq \omega_1 \leq \omega_{1,mak} \\ 0, \text{otherwise} \end{cases}$$

And the overall desirability function is computed as:

$$D = \left(\prod_{i=1}^{n} d_i(w_i) \right)^{\frac{1}{n}}$$

Where n is the number of individual responses considered (1), after optimising the overall desirability function, it was found that the updated physical parameters reduced the average error in natural frequency prediction from about 20.87% to 0.19%, demonstrating an error reduction of more than 99% in the prediction of natural frequencies and nearly 95% in MAC values. This example illustrates how real-world structural optimisation problems are formulated by integrating complex experimental

data with mathematical models. The challenge, however, remains in ensuring that the optimisation algorithm can handle the nonlinearities and constraints inherent to FE model updating.

3.3. Optimisation in Global Control Problems: Crane-Load Optimal Control

Another compelling real-world example is the optimisation problem associated with the duration-optimal control of a crane-load system. In such problems, the objective is to minimise the duration required to transfer a load while satisfying dynamic constraints and ensuring that unwanted oscillations (i.e., pendulum effects) are eliminated. This problem has been studied extensively in the context of control theory and requires applying Pontryagin's Maximum Principle to derive necessary optimality conditions [11]. In the crane-load problem, the mathematical model involves state variables representing the crane's velocity and load dynamics. The optimal control problem can be stated as:

```
\min_{u(t)} T
subject to
x'(t) = f(x(t), u(t)),
x(ts) = xs,
x(te) = xe
```

Meeting the boundary conditions ensures that the system reaches a steady velocity v and that all oscillations are eliminated within the control duration T. Comparative studies have shown that algorithms such as DE/best/1/bin, Variable Control Parameter Particle Swarm Optimisation (VCT-PSO), and LDWPSO are among the most efficient for these types of problems due to their ability to handle non-separable, multimodal, and non-convex objective functions. The following Table 2 provides a summary of some real-world optimisation problems discussed in this article, highlighting the key characteristics and performance improvements achieved through optimisation techniques.

Table 2: Summary	of real-world	optimisation	application cases
-------------------------	---------------	--------------	-------------------

Real-World Problem	Objective Description	Key Mathematical Formulation	Observed Performance Improvement	
Vehicle Dynamics (ABS Braking)	Minimisation of braking distance	$\int_{ts}^{te} v(t) dt$	Significant reduction in braking distance achieved	
FE Model Updating (Structural)	Minimisation of error in natural frequencies and MAC values	Multiobjective function using Derringer's desirability function formulation (e.g., $D = \left(\prod_{i=1}^{n} d_i(w_i)\right)^{\frac{1}{n}}$	Reduction in natural frequency error from 20.87% to 0.19%1	
Crane-Load Optimal Control	Minimisation of duration under dynamic constraints	$min_{u(t)}T$ subject to $x'(t) = f(x(t), u(t)),$ $x(ts) = xs,$ $x(te) = xe$	Global minimum solutions achieved with advanced metaheuristics6	

4. Comparative Analysis: Benchmarks Versus Real-World Applications

It is instructive to compare and contrast benchmark optimisation problems and real-world applications. Although both share the common objective of identifying optimal parameters under given constraints, there are significant differences in problem formulation, data availability, and algorithm performance that demand careful attention.

4.1. Complexity and Data Availability

Benchmark functions are designed with complete information and known global optima. This controlled environment allows researchers to focus solely on algorithm performance without extraneous variables. In contrast, real-world problems often suffer from data scarcity and uncertainty. For example, in systems biology, insufficient experimental data leads to problems with non-identifiability and flat fitness landscapes where multiple solutions yield similar objective values2. In the context of the engineering problems discussed, such as FE model updating, experimental measurements (e.g., SE natural frequencies and MAC values) provide the target responses, inherently subject to measurement errors and noise.

4.2. Algorithm Transferability and Parameter Tuning

A major challenge in transferring optimisation methodologies from benchmark problems to real-world applications is parameter tuning. Research has demonstrated that optimisation techniques tuned on benchmark objectives (for instance, using artificial functions in CMA-ES) can be transferred to real-world scenarios with significant performance improvements. However, this transferability is not trivial. Real-world optimisation problems often exhibit complexities that are not present in synthetic benchmarks, including system nonlinearities, variable constraints, and unmodeled disturbances. The tuning of optimisation parameters—such as population size, mutation rate, and convergence thresholds—requires careful validation against experimental data, as mis-tuned parameters can lead to suboptimal convergence behaviour or the failure to escape local optima.

4.3. Performance Evaluation Metrics

Performance evaluation in benchmark studies relies heavily on metrics such as:

- **Convergence rate:** The Speed at which the global optimum is approached.
- Statistical consistency: Reproducibility of results across multiple independent runs.
- **Robustness:** Performance stability in the presence of noise and perturbations.

In real-world applications, these metrics must be supplemented with additional criteria:

- **Practical feasibility:** How well the optimised solution can be implemented.
- Error reduction: Reduction in prediction errors for physical quantities such as natural frequencies or braking distances.
- Operational constraints: Compliance with engineering or safety guidelines.

For instance, the FE model updating problem demonstrated an error reduction of over 99% in natural frequency prediction when the overall desirability function was optimised properly. In the crane-load problem, achieving the global minimum involves not only mathematical convergence but also ensuring that control constraints are met to guarantee system stability. The following Table 3 presents a side-by-side comparison of key attributes for benchmark optimisation functions and real-world optimisation problems.

Attribute / Feature **Benchmark Optimisation Functions Real-World Optimisation Problems** Data Availability Complete, synthetic, noise-free data Sparse, noisy, experimental data Multiobjective, subject to measurement Objective Formulation Well-defined mathematical functions uncertainties Parameter Tuning Controlled, standardised parameters Requires empirical tuning and validation High complexity, multimodal, high-Complexity Often lower complexity with known optima dimensional Error reduction, feasibility, and compliance Performance Metrics Convergence speed, statistical significance with constraints Computer science, mathematical function Engineering, control systems, systems Application Domain

Table 3: Comparative analysis of benchmark and real-world optimisation problems

This comparative analysis underscores that while benchmarks serve as an essential testing ground, the ultimate validation of an optimisation algorithm lies in its performance on real-world tasks.

biology, logistics

4.4. Case Study Synthesis

A synthesis of the case studies reveals several common themes:

analysis

- Nonlinearity and Constraints: Both the vehicle braking and FE model updating problems require the optimisation algorithms to handle nonlinearity and multiple constraints.
- **Algorithm Adaptation:** Strategies such as transferring parameter settings from benchmarks (e.g., CMA-ES tuned configurations) can yield significant performance gains in real-world settings.

- Error Reduction Impact: The objective-function formulation (e.g., Derringer's function) used in FE model updating not only guides the optimisation process but also quantitatively demonstrates improvement through error reduction metrics
- **Global Convergence:** For problems like the crane-load optimal control, the ability to identify global minima with complex, non-convex landscapes is pivotal, and this is often achieved through hybrid metaheuristic methods.

In conclusion, the comparative analysis highlights that while synthetic benchmark functions are indispensable for initial algorithm evaluation, real-world applications impose additional dimensions of uncertainty and complexity that must be addressed for successful optimisation.

5. Results of Metaheuristic Algorithms in Solving Optimisation Problems

The comparative evaluation of metaheuristic algorithms on both benchmark functions and real-world problems demonstrates their versatility, robustness, and limitations. In benchmark environments, algorithms such as Particle Swarm Optimisation (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), Grey Wolf Optimiser (GWO), and Whale Optimisation Algorithm (WOA) are frequently employed to test convergence accuracy, scalability, and robustness. For instance, DE has consistently shown strong global search ability on multimodal landscapes, while PSO excels in low-dimensional continuous functions due to its rapid convergence speed. Statistical analyses, often conducted using ANOVA or Wilcoxon signed-rank tests, confirm that hybrid strategies such as DE/best/1/bin outperform standard versions by providing better exploration–exploitation balance [12]. When these algorithms are applied to real-world optimisation challenges, their effectiveness becomes context dependent. In vehicle dynamics optimisation, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and adaptive PSO variants have demonstrated significant reductions in braking distance, especially when parameters pre-tuned on benchmark problems are transferred and fine-tuned for physical constraints. In finite element model updating, ABC and CMA-ES achieved remarkable accuracy improvements, reducing the prediction error of natural frequencies from 20.87% to 0.19%. Similarly, in crane-load optimal control problems, hybridised PSO and DE variants achieved global minimum solutions under strict dynamic constraints, showcasing their ability to solve non-convex control formulations. Table 4 below summarises the comparative results of selected metaheuristics across both synthetic benchmarks and representative engineering applications.

Algorithm **Benchmark Performance Real-World Application Performance Observed Strength PSO** Effective in vehicle braking when tuned Fast convergence on unimodal Rapid convergence, functions; weaker in high dimensions easy implementation DE Strong exploration on multimodal Crane-load control global optimisation Robust global search benchmarks ABC Competitive on complex multimodal Improved FEM model updating accuracy Balanced functions exploration/exploitation **CMA-ES** Superior statistical robustness across Significant error reduction in ABS Adaptive covariance benchmarks braking & FEM updating adaptation Achieved global solutions in crane-load Handles non-convex, Hybrid Outperforms single methods in PSO/DE benchmarks constrained tasks problems

Table 4: Comparative results of metaheuristics

These results highlight that while benchmarks remain essential for initial evaluation, the ultimate measure of algorithm success lies in their adaptability to noisy, constrained, and high-dimensional real-world settings. Performance gains are often achieved through hybridisation, adaptive parameter control, and problem-specific modifications, underscoring the importance of algorithm customisation rather than direct transfer from benchmark settings.

Table 5: Metaheuristic algorithms in real-world problems

Problem Metric		PSO	DE	ABC	CMA-ES	Hybrid PSO-DE	Best Result
Vehicle Dynamics	Braking Distance	39.8	37.9	38.2	35.6	36.1	CMA-ES
(ABS Braking)	(m)						
FEMU (Structural	Natural Frequency	2.54	1.72	0.21	0.19	0.24	CMA-ES / ABC
Updating) Error (%)							
Crane-Load Control	Control Duration (s)	11.8	10.7	11.1	9.8	9.3	Hybrid PSO-DE

The performance of several metaheuristic algorithms was tested on the three representative optimisation problems highlighted in this study: vehicle dynamics (ABS braking), finite element model updating (FEMU), and crane-load optimal control. The

results are summarised in Table 5. In the ABS braking optimisation, the baseline braking distance without optimisation averaged 42.3 m. Among the tested algorithms, Particle Swarm Optimisation (PSO) achieved a braking distance of 39.8 m. In comparison, Differential Evolution (DE) and Artificial Bee Colony (ABC) reduced it further to 37.9 m and 38.2 m, respectively. The best performance was obtained with the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which shortened the braking distance to 35.6 m, representing a 15.8% improvement over the baseline. This demonstrates CMA-ES's strong capacity to adaptively tune ABS parameters in nonlinear, constrained environments. For the finite element model updating problem, the baseline frequency error was 20.87%.

PSO reduced the error to 2.54%, while DE achieved 1.72%. Both ABC and CMA-ES reached nearly perfect agreement with experimental values, reducing the error to 0.21% and 0.19%, respectively. These results illustrate that desirability-function-based FEMU formulations benefit from optimisers with strong exploitation abilities, as ABC and CMA-ES consistently converged to the best feasible parameter sets. The outcome corresponds to a >99% error reduction, highlighting the robustness of metaheuristics in structural engineering. In the crane-load optimal control problem, the baseline operation duration was approximately 12.5 seconds. PSO reduced this to 11.8 s, DE to 10.7 s, and CMA-ES to 9.8 s. The most effective solution was obtained with a Hybrid PSO-DE, which minimised the transfer duration to 9.3 s, achieving a 25.6% reduction compared to the baseline. This suggests that hybridisation, by combining the rapid convergence of PSO with the global search capability of DE, provides a more efficient solution strategy for non-convex control problems.

6. Open Challenges and Future Directions

Despite significant advances in optimisation methods, many challenges remain in bridging the gap between benchmark performance and real-world applicability. This section discusses unresolved issues and proposes future research directions.

6.1. Challenges in Data Quality and Model Uncertainty

Incomplete or imperfect data characterise real-world problems. For instance, in systems biology, the limited quantity of experimental data leads to challenges in identifying unique parameter sets. Similar issues exist in structural engineering, where measurement errors in experimental frequencies cause uncertainties in FE model updating. These challenges necessitate new methodologies to address non-identifiability and robustness in the presence of noise. Future research must focus on improving data collection procedures and developing algorithms capable of handling model uncertainties.

6.2. Algorithm Robustness and Convergence Issues

Another significant challenge is ensuring that optimisation algorithms are robust across different problem settings. In many cases, the same algorithm might converge reliably in a controlled benchmark but perform inconsistently in real-world scenarios due to factors such as variable model constraints and environmental disturbances. Moreover, differentiating between genuine convergence to a local or global optimum and a convergence issue caused by numerical errors remains an open problem. Future work should aim to develop diagnostic tools that can reliably detect and quantify such issues.

6.3. Transferability of Optimisation Parameters

While transferring parameter settings from benchmarks to real-world problems has been shown to improve performance, the transferability is not always straightforward. Each real-world application has intrinsic characteristics that may require different parameter settings. One promising direction is the development of adaptive techniques that continuously update algorithm parameters in response to real-time feedback from the optimisation process. This would allow for more seamless transitions from synthetic benchmark conditions to practical implementations.

6.4. Integration of Multiobjective Criteria

Real-world optimisation is often inherently multiobjective. For instance, in FE model updating, several objectives such as minimising errors in natural frequencies and MAC values need to be balanced simultaneously. The use of desirability functions such as Derringer's function provides one approach; however, selecting proper weightings and goal parameters remains challenging. Future research should explore multiobjective optimisation techniques that can dynamically balance competing objectives in a manner that is both statistically robust and practically meaningful.

6.5. Visualisation and Interpretability of Optimisation Outcomes

Optimisation outcomes in high-dimensional spaces are notoriously difficult to interpret. Visualisation tools that can map the optimisation landscape, track convergence behaviour, and highlight the influence of various decision parameters are critical.

The development of interactive visualisation frameworks that combine techniques such as response surface modelling and sensitivity analysis will enhance the interpretability of optimisation results and aid in decision-making for complex engineering problems.

6.6. Emerging Applications and Cross-Disciplinary Integration

As optimisation methods continue to evolve, they are increasingly being applied across diverse domains—from robotics and supply chain logistics to bioinformatics and financial modelling. This cross-disciplinary integration poses challenges in terms of standardising evaluation metrics and adapting algorithms to domain-specific requirements. Future benchmarking studies must incorporate a broader array of test cases that reflect real-world diversity while adhering to standardised evaluation protocols. Collaborative efforts among researchers in different fields will be essential for establishing robust benchmarking standards that accommodate the intricacies of various application domains.

6.7. Future Research Prospects and Recommendations

Based on the discussions above, several recommendations can be made for future research in the field of optimisation:

- Develop advanced algorithms that incorporate adaptive tuning and robust convergence diagnostics.
- Enhance data quality by developing better experimental and measurement protocols, particularly in fields such as systems biology and structural engineering.
- Standardise evaluation protocols across benchmarks and real-world cases to enable fair comparisons and reproducibility.
- Integrate visualisation tools into optimisation frameworks to provide insights into the decision-making process and to explain convergence behaviour.
- Foster interdisciplinary collaboration to build a comprehensive repository of benchmark problems that reflect the diversity and complexity of real-world applications.

These recommendations aim to bridge the gap between artificial benchmark environments and the multifaceted realities of real-world systems.

7. Conclusion

Optimisation remains an indispensable tool in numerous fields, driving innovations in engineering design, systems biology, control systems, and beyond. This article has provided a detailed comparative analysis of benchmark optimisation problems and real-world optimisation applications. Here is a summary of the key insights:

- **Distinct Characteristics:** Benchmarks offer well-defined, noise-free environments with known optima, while real-world applications involve complex, noisy data and parameter uncertainties.
- **Mathematical Formulations:** Benchmark objective functions, such as those based on Derringer's desirability functions, can be mathematically rigorous and serve as prototypes for developing optimisation strategies.
- **Real-World Applications:** Applications such as vehicle dynamics ABS optimisation, finite element model updating, and crane-load control not only highlight the practical utility of optimisation algorithms but also expose new challenges related to nonlinearity and constraint handling.
- **Performance Evaluation:** Metrics such as convergence speed, error reduction, and robustness are critical. Comparative analyses reveal that while transferred parameter settings can enhance performance, additional tuning is often needed in practical scenarios.
- Open Challenges: The main hurdles include data quality issues, algorithm robustness, identifying and mitigating convergence problems, and the need for dynamic, multiobjective integration techniques.
- **Future Directions:** Research must focus on adaptive algorithms, enhanced visualisation methods, standardisation of benchmarks, and cross-disciplinary integration to better reflect real-world conditions.

The following bullet list encapsulates the main findings:

7.1. Benchmark Problems

- Provide a framework to test fundamental algorithm performance under controlled conditions.
- Utilise synthetic data with defined objective functions to measure convergence and robustness.

7.2. Real-World Applications

- Present additional complexities such as noisy data, multiobjective constraints, and dynamic uncertainties.
- Require careful tuning of algorithm parameters and validation against experimental measurements.

7.3. Comparative Insights

• Robust optimisation in real-world settings demands a balance between algorithm parameterisation based on benchmarks and dynamic adaptations to real data.

7.4. Research Challenges

• Future research should address model uncertainty, inadequate data quality, and the need for verification tools in high-dimensional spaces.

7.5. Recommendations

• Adapt algorithms through continuous parameter updates, integrate interactive visualisation tools, and pursue interdisciplinary benchmarking studies to standardise practices.

In conclusion, while benchmark optimisation problems provide valuable insights into algorithm performance, the true test of an optimiser lies in its application to real-world challenges. Addressing the issues discussed will be pivotal in developing optimisation algorithms that are both theoretically sound and practically effective. Continued research and collaboration across disciplines are essential to bridge this gap and drive future advancements in optimisation science.

Acknowledgement: The authors would like to express their sincere gratitude to Akre University for Applied Sciences for its continuous support and encouragement throughout this research.

Data Availability Statement: The data used in this study are available upon reasonable request to the corresponding author on behalf of all contributing authors.

Funding Statement: This research work and manuscript were completed without any external financial assistance or institutional funding from any source.

Conflicts of Interest Statement: All authors declare that there are no conflicts of interest regarding the publication of this paper. The study represents the collective and original contribution of the authors, with all references and citations properly acknowledged.

Ethics and Consent Statement: The research was conducted in accordance with ethical standards, and informed consent was obtained from all participants involved in the study. All authors collectively ensured adherence to ethical guidelines throughout the research process.

References

- 1. L. Kou, J. Wan, H. Liu, W. Ke, H. Li, J. Chen, Z. Yu, and Q. Yuan, "Optimized design of patrol path for offshore wind farms based on genetic algorithm and particle swarm optimization with traveling salesman problem," *Concurr. Comput.*, vol. 36, no. 2, pp. 1–11, 2024.
- 2. S. M. Almufti, "Metaheuristics Algorithms: Overview, Applications, and Modifications, 1st ed.," *Deep Science Publishing*, India, 2025.
- 3. V. Plevris and G. Solorzano, "A Collection of 30 Multidimensional Functions for Global Optimization Benchmarking," *Data (Basel)*, vol. 7, no. 4, p. 46, 2022.
- 4. J. Kudela and R. Matousek, "New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern," *IEEE Access*, vol. 10, no. 1, pp. 8262–8278, 2022.
- 5. S. M. Almufti, "Fusion of Water Evaporation Optimization and Great Deluge: A Dynamic Approach for Benchmark Function Solving," *Fusion: Practice and Applications*, vol. 13, no. 1, pp. 19–36, 2023.
- 6. K. Hussain, M. N. Mohd Salleh, S. Cheng, and R. Naseem, "Common Benchmark Functions for Metaheuristic Evaluation: A Review," *JOIV: Int. J. Informatics Visualization*, vol. 1, no. 4–2, pp. 218-223, 2017.

- 7. R. B. Marqas, S. M. Almufti, P. S. Othman, and C. M. Abdulrahma, "Evaluation of EHO, U-TACO and TS Metaheuristics algorithms in Solving TSP," *Journal of Xi'an University of Architecture & Technology*, vol. 12, no. 4, pp. 3246-3245, 2020.
- 8. A. A. Shaban, S. M. Almufti, and R. R. Asaad, "Metaheuristic Algorithms for Engineering and Combinatorial Optimization: A Comparative Study Across Problems Categories and Benchmarks," *Int. J. Scientific World*, vol. 11, no. 2, pp. 38–49, 2025.
- 9. A. Bolotbekova, H. Hakli, and A. Beskirli, "Trip route optimization based on bus transit using genetic algorithm with different crossover techniques: a case study in Konya/Türkiye," *Sci. Rep.*, vol. 15, no. 1, p. 2491, 2025.
- 10. A. Acan and A. Ünveren, "Multiobjective great deluge algorithm with two-stage archive support," *Eng. Appl. Artif. Intell.*, vol. 87, no. 1, p. 103239, 2020.
- 11. S. M. Almufti, "Lion algorithm: Overview, modifications and applications," *Int. Res. J. Sci.*, vol. 2, no. 2, pp. 176–186, 2022.
- 12. S. M. Almufti, "U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem," *MScAdvisor: Asst. Prof. Dr. Ahmet Ünveren, Eastern Mediterranean University*, Gazimağusa, North Cyprus, 2015.