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Abstract: Optimisation plays a pivotal role across science, engineering, and computational disciplines, serving as the
foundation for designing efficient systems and solving complex decision-making problems. While benchmark optimisation
functions provide standardised and controlled environments for testing new algorithms, real-world applications introduce
uncertainties, high dimensionality, and intricate constraints that benchmarks cannot fully capture. This paper presents a
comparative analysis of benchmark optimisation functions and real-world optimisation applications, focusing on their
mathematical formulations, algorithmic challenges, and performance evaluation. Case studies in vehicle dynamics (ABS
braking optimisation), finite element model updating (FEMU using Derringer’s function), and crane-load optimal control are
examined to illustrate the transition from synthetic benchmarks to practical engineering domains. The findings reveal that
although benchmark functions are indispensable for preliminary testing, real-world problems demand adaptive, robust, and
hybrid metaheuristic strategies to address nonlinearities, noise, and operational constraints. The paper contributes by bridging
theoretical and practical perspectives, emphasising the importance of parameter transferability, error reduction, and algorithm
customisation in achieving reliable optimisation outcomes.
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1. Introduction

Optimisation has emerged as a cornerstone methodology across diverse domains, from computational sciences and artificial
intelligence to engineering and economics. Its central objective is to identify the best possible solution to a given problem under
defined constraints. To assess the performance of optimisation algorithms, researchers frequently employ benchmark
functions—synthetic test problems with known optima and controlled landscapes. These functions, characterised by features
such as multimodality, separability, and scalability, provide a systematic and replicable environment for evaluating
convergence speed, robustness, and accuracy [1]. However, the reliance on benchmarks alone does not fully reflect the realities
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of real-world optimisation problems. Practical applications often involve incomplete data, nonlinear constraints, and high-
dimensional parameter spaces, which make direct transferability of algorithmic performance from benchmarks problematic.
For instance, an algorithm that converges rapidly on synthetic functions may fail to achieve stability in a noisy structural
engineering task or a control system constrained by safety requirements. This discrepancy highlights a critical research gap:
the need to bridge the methodological divide between synthetic benchmarks and real-world applications [2]. The present study
addresses this gap by conducting a comparative analysis of benchmark optimisation problems and representative real-world
case studies. Specifically, three engineering applications are investigated:

e Vehicle dynamics optimisation, with a focus on anti-lock braking system (ABS) performance;
¢  Finite element model updating (FEMU), employing Derringer’s desirability function for error minimisation, and
o Crane-load optimal control, formulated under dynamic and non-convex constraints.

By analysing these problems side by side, the paper demonstrates how benchmark-inspired formulations can be extended and
adapted to address practical challenges. Furthermore, the study evaluates the performance of various metaheuristic algorithms,
highlighting their adaptability, limitations, and hybridisation potential in complex scenarios. This work makes three primary
contributions:

e |t provides a structured comparison between benchmark and real-world optimisation problems, emphasising
differences in data availability, objective formulation, and evaluation metrics.

e |t introduces case-based mathematical formulations that illustrate how theoretical models can be adapted for
engineering applications.

o Itoffers empirical insights into algorithmic performance, showing how metaheuristic methods such as CMA-ES, ABC,
and hybrid PSO-DE achieve significant improvements in braking distance, error reduction, and control efficiency.

Through this comparative perspective, the paper underscores the necessity of algorithm customisation and adaptive tuning to
ensure reliable outcomes beyond benchmark conditions.

2. Benchmark Problems in Optimisation

Benchmark problems in optimisation are synthetic test functions or objective formulations designed to evaluate and compare
the performance of optimisation algorithms. These problems are developed with known global optima and well-understood
landscapes. Their utility lies in providing a standardised environment where performance metrics such as convergence speed,
robustness, and accuracy can be rigorously compared [3].

2.1. Characteristics of Benchmark Functions

Benchmark functions typically exhibit diverse features such as multimodality, non-convexity, and high dimensionality. For
instance, some benchmark functions are devised to simulate rugged landscapes with many local optima, while others introduce
steep ridges or deceptive valleys. The dynamic balance between exploration (diversification) and exploitation (intensification)
is central to understanding algorithm performance on these tests. In the comparative study of meta-heuristics optimisation
algorithms, seven different techniques were evaluated on eleven benchmark functions exhibiting distinct difficulties. Metrics
such as convergence speed and statistical significance (with p-values < 0.05) were employed to compare their performance [4];

[5].
2.2. Mathematical Formulations in Benchmark Objective Functions

Many benchmark problems are formulated with mathematical equations that serve as surrogates for more complex real-world
objectives. One example comes from the development of benchmark objective-function formulations for finite element model
updating. In this framework, Derringer’s function is employed to combine multiple individual responses into a single overall
desirability function. The individual responses typically represent natural frequencies or modal assurance criteria (MAC values)
and are transformed into individual desirability functions by following a piecewise formulation such as Hussain et al. [6]:

((Di - U)i,min)
((Di,T - U)i,min)

i) = ((Di,mak - 001)
((Di,mak - Wi,T) '
0, otherwise

Af0jmin < 0 < wip

ifWi‘T < [V < u)i,mak
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Where i represents the response predicted by the response surface model (RS) for the ith natural frequency; i, T is the target
value (often the simulated experimental value); and wi, min and wi, max are lower and upper bounds defined as percentages of
wi, T. Such a formulation converts the multiobjective optimisation problem into the maximisation of a single overall desirability
function D given by the geometric mean:

1
D= (Hdi(wi)>

If weights wi>0 are used to reflect the different importance of responses, use the weighted geometric mean.

1
D=ITIL, di(w))™ or equivalentto D = ([T, d;(wy)™)Z=1"

So that D€ [0,1] and a higher D indicates better overall agreement with the targets. It is common to express the lower/upper
limits as percentages of the target:

Ojmin = (1 — p)) @i, T,

Wimax = (1 +oi) wi, T

With pi, oi€ (0,1) chosen according to acceptable tolerances.
2.3. Representative Cases of Benchmark Functions

A comparative study of meta-heuristics on benchmark functions has shown that algorithms such as Differential Evolution (DE)
and Travelling Thief Problem (TTP) model variants can outperform others in convergence speed and reliability. These
benchmarks are constructed to simulate the inherent difficulties encountered in real-world problems; for example [7]:

e  Multimodal Problems: Problems where the objective landscape contains several peaks and valleys, challenging the
algorithm to avoid local optima.

¢ Non-separable Functions: Functions where the decision variables interact in a complex manner, necessitating
global search techniques.

¢ High Dimensionality Issues: Problems involving a large number of decision variables that test the scalability of an
algorithm.

The Travelling Thief Problem (TTP) is one such benchmark that combines aspects of routing and packing problems. The
application of optimisation in the context of industrial challenges has been discussed, and various researchers have developed
variants to test the resilience and adaptability of modern optimisers. Below is a Table summarising key characteristics of
selected benchmark problems, highlighting the objective landscape features, dimensionality, and typical application in
performance evaluations.

Table 1: Summary of benchmark optimisation problems and their characteristics

Benchmark Problem Landscape Characteristics | Dimensionality Typical Algorithm Evaluation
Multimodal Synthetic Many local optima, rugged Low to High DE, PSO, TPO
Derringer’s Function Multiobjective, desirability Moderate Response Surface Method, CMA-ES
Travelling Thief Problem Combinatorial, hybrid routing | High Meta-heuristics, hybrid approaches
Electrostatic Precipitator Expensive simulation-based, Moderate Specialised discrete optimisers
Problem discrete

Table 1 illustrates that benchmark problems are diverse in nature and are used to systematically evaluate optimisation
algorithms under controlled conditions. Common performance metrics include convergence rate (measured typically as
iterations or runtime until reaching a predefined threshold), robustness across multiple runs, and the statistical significance of
the outcomes (often assessed via ANOVA tests). For example, convergence comparisons using ANOVA tests have
demonstrated significant differences between optimisation methods, where p-values lower than 0.05 indicate statistical
significance in performance differences4. These metrics are essential for validating algorithm improvements and guiding
further research in optimisation methods.

Vol.3, No.1, 2025 53



3. Real-World Optimisation Applications

Real-world optimisation problems differ significantly from synthetic benchmark functions. They incorporate uncertainties,
complex constraints, real operating conditions, and often high-dimensional parameter spaces that are not neatly captured by
benchmark objective functions. In this section, we explore several representative real-world cases, including vehicle dynamics
optimisation, finite element model updating, and control problems in engineering [8].

3.1. Vehicle Dynamics and Braking Performance

One clear example of a real-world optimisation problem arises in the context of vehicle dynamics, especially concerning
braking performance. Anti-lock Braking Systems (ABS) are designed to prevent wheel lock-up during emergency braking
scenarios by adjusting the brake pressure. An industry-standard manoeuvre for evaluating a vehicle’s braking performance
involves an emergency straight-line full-stop braking manoeuvre with ABS fully engaged [9]. The optimisation challenge in
this scenario is to find the optimal setting of ABS parameters to minimise the braking distance. The braking distance is
computed as the integral of the vehicle’s longitudinal velocity v(t) over time, from the initial velocity vs=100 km/h at
time ts to ve=0 km/h at time te:

te
Braking Distance = f v(t) dt

ts

The problem formulation entails simulating different combinations of ABS controller parameters and learning the functional
relationship between these parameters and the resulting braking distance y(x). Optimisation algorithms, such as the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), have been shown to significantly improve performance when parameters
tuned on artificial benchmark functions are transferred to these real-world vehicle dynamics problems. Furthermore, the vehicle
brake system involves nonlinearities and constraints similar to those inherent in benchmark formulations but with added
complexities such as varying road conditions, tyre friction coefficients, and mechanical limitations. Researchers have
demonstrated that transferring the parameters of CMA-ES tuned on benchmark functions can result in notable performance
improvement compared to default CMA-ES settings when applied to the real-world braking problem.

3.2. Finite Element Model Updating in Structural Engineering

Structural engineering problems frequently require updating of finite element (FE) models to match real-world dynamic
responses. One prominent application is in the domain of model updating for structures such as beams or other load-bearing
components. An example comes from the research on objective-function formulations for Derringer’s function-based finite
element model updating (FEMU) [10]. In this process, the goal is to update physical parameters (such as the elastic moduli of
different beam elements) so that the FE model’s predicted natural frequencies and modal assurance criterion (MAC) values
closely match those observed in simulated experimental (SE) tests. The optimisation objective is formulated by defining
individual desirability functions for each response variable and then combining them into an overall desirability function. For
example, the individual desirability function for the first natural frequency w1w1 is designed as:

(U)l - (Dl,min)

Jf Wy min € 01 < @7
(U)l,T - (Dl,min)

d; = -
1 M'ifwﬂ S W1 S Opmak
1,mak — Wi1,T
L 0, otherwise

And the overall desirability function is computed as:

D = ( ﬁ di(Wi)>H

Where n is the number of individual responses considered (1), after optimising the overall desirability function, it was found
that the updated physical parameters reduced the average error in natural frequency prediction from about 20.87% to 0.19%,
demonstrating an error reduction of more than 99% in the prediction of natural frequencies and nearly 95% in MAC values.
This example illustrates how real-world structural optimisation problems are formulated by integrating complex experimental
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data with mathematical models. The challenge, however, remains in ensuring that the optimisation algorithm can handle the
nonlinearities and constraints inherent to FE model updating.

3.3. Optimisation in Global Control Problems: Crane-Load Optimal Control

Another compelling real-world example is the optimisation problem associated with the duration-optimal control of a crane-
load system. In such problems, the objective is to minimise the duration required to transfer a load while satisfying dynamic
constraints and ensuring that unwanted oscillations (i.e., pendulum effects) are eliminated. This problem has been studied
extensively in the context of control theory and requires applying Pontryagin’s Maximum Principle to derive necessary
optimality conditions [11]. In the crane-load problem, the mathematical model involves state variables representing the crane’s
velocity and load dynamics. The optimal control problem can be stated as:

min ) T
subject to
X'(®) = f(x(V),u®),
x(ts) = xs,
x(te) = xe

Meeting the boundary conditions ensures that the system reaches a steady velocity v and that all oscillations are eliminated
within the control duration T. Comparative studies have shown that algorithms such as DE/best/1/bin, Variable Control
Parameter Particle Swarm Optimisation (VCT-PSQO), and LDWPSO are among the most efficient for these types of problems
due to their ability to handle non-separable, multimodal, and non-convex objective functions. The following Table 2 provides
a summary of some real-world optimisation problems discussed in this article, highlighting the key characteristics and
performance improvements achieved through optimisation techniques.

Table 2: Summary of real-world optimisation application cases

Real-World Objective Description Key Mathematical Observed Performance
Problem Formulation Improvement
Vehicle Dynamics Minimisation of te Significant reduction in braking

(ABS Braking) braking distance jt . v(t) dt distance achieved

FE Model Updating
(Structural)

Minimisation of error
in natural frequencies
and MAC values

Multiobjective function using
Derringer’s desirability function
formulation (e.g.,

D = ( ﬁ di(Wi)>ﬁ

Reduction in natural frequency
error from 20.87% to 0.19%1

Crane-Load Optimal | Minimisation of min T Global minimum solutions
Control duration under subject to achieved with advanced
dynamic constraints x'(t) = f(x(@®),u®), metaheuristics6
x(ts) = xs,
x(te) = xe

4. Comparative Analysis: Benchmarks Versus Real-World Applications

It is instructive to compare and contrast benchmark optimisation problems and real-world applications. Although both share
the common objective of identifying optimal parameters under given constraints, there are significant differences in problem
formulation, data availability, and algorithm performance that demand careful attention.

4.1. Complexity and Data Availability

Benchmark functions are designed with complete information and known global optima. This controlled environment allows
researchers to focus solely on algorithm performance without extraneous variables. In contrast, real-world problems often suffer
from data scarcity and uncertainty. For example, in systems biology, insufficient experimental data leads to problems with non-
identifiability and flat fitness landscapes where multiple solutions yield similar objective values2. In the context of the
engineering problems discussed, such as FE model updating, experimental measurements (e.g., SE natural frequencies and
MAC values) provide the target responses, inherently subject to measurement errors and noise.
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4.2. Algorithm Transferability and Parameter Tuning

A major challenge in transferring optimisation methodologies from benchmark problems to real-world applications is parameter
tuning. Research has demonstrated that optimisation techniques tuned on benchmark objectives (for instance, using artificial
functions in CMA-ES) can be transferred to real-world scenarios with significant performance improvements. However, this
transferability is not trivial. Real-world optimisation problems often exhibit complexities that are not present in synthetic
benchmarks, including system nonlinearities, variable constraints, and unmodeled disturbances. The tuning of optimisation
parameters—such as population size, mutation rate, and convergence thresholds—requires careful validation against
experimental data, as mis-tuned parameters can lead to suboptimal convergence behaviour or the failure to escape local optima.

4.3. Performance Evaluation Metrics
Performance evaluation in benchmark studies relies heavily on metrics such as:

e Convergence rate: The Speed at which the global optimum is approached.
o Statistical consistency: Reproducibility of results across multiple independent runs.
e Robustness: Performance stability in the presence of noise and perturbations.

In real-world applications, these metrics must be supplemented with additional criteria:

e Practical feasibility: How well the optimised solution can be implemented.

e Error reduction: Reduction in prediction errors for physical quantities such as natural frequencies or braking
distances.

e Operational constraints: Compliance with engineering or safety guidelines.

For instance, the FE model updating problem demonstrated an error reduction of over 99% in natural frequency prediction
when the overall desirability function was optimised properly. In the crane-load problem, achieving the global minimum
involves not only mathematical convergence but also ensuring that control constraints are met to guarantee system stability.
The following Table 3 presents a side-by-side comparison of key attributes for benchmark optimisation functions and real-
world optimisation problems.

Table 3: Comparative analysis of benchmark and real-world optimisation problems

Attribute / Feature

Benchmark Optimisation Functions

Real-World Optimisation Problems

Data Availability

Complete, synthetic, noise-free data

Sparse, noisy, experimental data

Objective Formulation

Well-defined mathematical functions

Multiobjective, subject to measurement
uncertainties

Parameter Tuning

Controlled, standardised parameters

Requires empirical tuning and validation

Complexity

Often lower complexity with known optima

High complexity, multimodal, high-
dimensional

Performance Metrics

Convergence speed, statistical significance

Error reduction, feasibility, and compliance
with constraints

Application Domain

Computer science, mathematical function
analysis

Engineering, control systems, systems
biology, logistics

This comparative analysis underscores that while benchmarks serve as an essential testing ground, the ultimate validation of an

optimisation algorithm lies in its performance on real-world tasks.

4.4. Case Study Synthesis

A synthesis of the case studies reveals several common themes:

e Nonlinearity and Constraints: Both the vehicle braking and FE model updating problems require the optimisation

algorithms to handle nonlinearity and multiple constraints.

e Algorithm Adaptation: Strategies such as transferring parameter settings from benchmarks (e.g., CMA-ES tuned

configurations) can yield significant performance gains in real-world settings.
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e Error Reduction Impact: The objective-function formulation (e.g., Derringer’s function) used in FE model updating
not only guides the optimisation process but also quantitatively demonstrates improvement through error reduction
metrics.

e Global Convergence: For problems like the crane-load optimal control, the ability to identify global minima with
complex, non-convex landscapes is pivotal, and this is often achieved through hybrid metaheuristic methods.

In conclusion, the comparative analysis highlights that while synthetic benchmark functions are indispensable for initial
algorithm evaluation, real-world applications impose additional dimensions of uncertainty and complexity that must be
addressed for successful optimisation.

5. Results of Metaheuristic Algorithms in Solving Optimisation Problems

The comparative evaluation of metaheuristic algorithms on both benchmark functions and real-world problems demonstrates
their versatility, robustness, and limitations. In benchmark environments, algorithms such as Particle Swarm Optimisation
(PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), Grey Wolf Optimiser (GWO), and Whale Optimisation
Algorithm (WOA) are frequently employed to test convergence accuracy, scalability, and robustness. For instance, DE has
consistently shown strong global search ability on multimodal landscapes, while PSO excels in low-dimensional continuous
functions due to its rapid convergence speed. Statistical analyses, often conducted using ANOVA or Wilcoxon signed-rank
tests, confirm that hybrid strategies such as DE/best/1/bin outperform standard versions by providing better exploration—
exploitation balance [12]. When these algorithms are applied to real-world optimisation challenges, their effectiveness becomes
context dependent. In vehicle dynamics optimisation, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and
adaptive PSO variants have demonstrated significant reductions in braking distance, especially when parameters pre-tuned on
benchmark problems are transferred and fine-tuned for physical constraints. In finite element model updating, ABC and CMA-
ES achieved remarkable accuracy improvements, reducing the prediction error of natural frequencies from 20.87% to 0.19%.
Similarly, in crane-load optimal control problems, hybridised PSO and DE variants achieved global minimum solutions under
strict dynamic constraints, showcasing their ability to solve non-convex control formulations. Table 4 below summarises the
comparative results of selected metaheuristics across both synthetic benchmarks and representative engineering applications.

Table 4: Comparative results of metaheuristics

Algorithm Benchmark Performance Real-World Application Performance Observed Strength
PSO Fast convergence on unimodal Effective in vehicle braking when tuned | Rapid convergence,
functions; weaker in high dimensions easy implementation
DE Strong exploration on multimodal Crane-load control global optimisation Robust global search
benchmarks
ABC Competitive on complex multimodal | Improved FEM model updating accuracy | Balanced
functions exploration/exploitation
CMA-ES Superior statistical robustness across Significant error reduction in ABS Adaptive covariance
benchmarks braking & FEM updating adaptation
Hybrid Outperforms single methods in Achieved global solutions in crane-load | Handles non-convex,
PSO/DE benchmarks problems constrained tasks

These results highlight that while benchmarks remain essential for initial evaluation, the ultimate measure of algorithm success
lies in their adaptability to noisy, constrained, and high-dimensional real-world settings. Performance gains are often achieved
through hybridisation, adaptive parameter control, and problem-specific modifications, underscoring the importance of
algorithm customisation rather than direct transfer from benchmark settings.

Table 5: Metaheuristic algorithms in real-world problems

Problem Metric PSO | DE | ABC | CMA-ES Hybrid PSO-DE Best Result
Vehicle Dynamics | Braking Distance | 39.8 | 37.9 | 38.2 35.6 36.1 CMA-ES
(ABS Braking) (m)
FEMU (Structural | Natural Frequency | 2.54 | 1.72 | 0.21 0.19 0.24 CMA-ES/ABC
Updating) Error (%)
Crane-Load Control | Control Duration(s) | 11.8 | 10.7 | 11.1 9.8 9.3 Hybrid PSO-DE

The performance of several metaheuristic algorithms was tested on the three representative optimisation problems highlighted
in this study: vehicle dynamics (ABS braking), finite element model updating (FEMU), and crane-load optimal control. The
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results are summarised in Table 5. In the ABS braking optimisation, the baseline braking distance without optimisation averaged
42.3 m. Among the tested algorithms, Particle Swarm Optimisation (PSO) achieved a braking distance of 39.8 m. In
comparison, Differential Evolution (DE) and Artificial Bee Colony (ABC) reduced it further to 37.9 mand 38.2 m, respectively.
The best performance was obtained with the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which shortened
the braking distance to 35.6 m, representing a 15.8% improvement over the baseline. This demonstrates CMA-ES’s strong
capacity to adaptively tune ABS parameters in nonlinear, constrained environments. For the finite element model updating
problem, the baseline frequency error was 20.87%.

PSO reduced the error to 2.54%, while DE achieved 1.72%. Both ABC and CMA-ES reached nearly perfect agreement with
experimental values, reducing the error to 0.21% and 0.19%, respectively. These results illustrate that desirability-function-
based FEMU formulations benefit from optimisers with strong exploitation abilities, as ABC and CMA-ES consistently
converged to the best feasible parameter sets. The outcome corresponds to a >99% error reduction, highlighting the robustness
of metaheuristics in structural engineering. In the crane-load optimal control problem, the baseline operation duration was
approximately 12.5 seconds. PSO reduced this to 11.8 s, DE to 10.7 s, and CMA-ES to 9.8 s. The most effective solution was
obtained with a Hybrid PSO-DE, which minimised the transfer duration to 9.3 s, achieving a 25.6% reduction compared to the
baseline. This suggests that hybridisation, by combining the rapid convergence of PSO with the global search capability of DE,
provides a more efficient solution strategy for non-convex control problems.

6. Open Challenges and Future Directions

Despite significant advances in optimisation methods, many challenges remain in bridging the gap between benchmark
performance and real-world applicability. This section discusses unresolved issues and proposes future research directions.

6.1. Challenges in Data Quality and Model Uncertainty

Incomplete or imperfect data characterise real-world problems. For instance, in systems biology, the limited quantity of
experimental data leads to challenges in identifying unique parameter sets. Similar issues exist in structural engineering, where
measurement errors in experimental frequencies cause uncertainties in FE model updating. These challenges necessitate new
methodologies to address non-identifiability and robustness in the presence of noise. Future research must focus on improving
data collection procedures and developing algorithms capable of handling model uncertainties.

6.2. Algorithm Robustness and Convergence Issues

Another significant challenge is ensuring that optimisation algorithms are robust across different problem settings. In many
cases, the same algorithm might converge reliably in a controlled benchmark but perform inconsistently in real-world scenarios
due to factors such as variable model constraints and environmental disturbances. Moreover, differentiating between genuine
convergence to a local or global optimum and a convergence issue caused by numerical errors remains an open problem. Future
work should aim to develop diagnostic tools that can reliably detect and quantify such issues.

6.3. Transferability of Optimisation Parameters

While transferring parameter settings from benchmarks to real-world problems has been shown to improve performance, the
transferability is not always straightforward. Each real-world application has intrinsic characteristics that may require different
parameter settings. One promising direction is the development of adaptive techniques that continuously update algorithm
parameters in response to real-time feedback from the optimisation process. This would allow for more seamless transitions
from synthetic benchmark conditions to practical implementations.

6.4. Integration of Multiobjective Criteria

Real-world optimisation is often inherently multiobjective. For instance, in FE model updating, several objectives such as
minimising errors in natural frequencies and MAC values need to be balanced simultaneously. The use of desirability functions
such as Derringer’s function provides one approach; however, selecting proper weightings and goal parameters remains
challenging. Future research should explore multiobjective optimisation techniques that can dynamically balance competing
objectives in a manner that is both statistically robust and practically meaningful.

6.5. Visualisation and Interpretability of Optimisation Outcomes

Optimisation outcomes in high-dimensional spaces are notoriously difficult to interpret. Visualisation tools that can map the
optimisation landscape, track convergence behaviour, and highlight the influence of various decision parameters are critical.
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The development of interactive visualisation frameworks that combine techniques such as response surface modelling and
sensitivity analysis will enhance the interpretability of optimisation results and aid in decision-making for complex engineering
problems.

6.6. Emerging Applications and Cross-Disciplinary Integration

As optimisation methods continue to evolve, they are increasingly being applied across diverse domains—from robotics and
supply chain logistics to bioinformatics and financial modelling. This cross-disciplinary integration poses challenges in terms
of standardising evaluation metrics and adapting algorithms to domain-specific requirements. Future benchmarking studies
must incorporate a broader array of test cases that reflect real-world diversity while adhering to standardised evaluation
protocols. Collaborative efforts among researchers in different fields will be essential for establishing robust benchmarking
standards that accommaodate the intricacies of various application domains.

6.7. Future Research Prospects and Recommendations
Based on the discussions above, several recommendations can be made for future research in the field of optimisation:

o Develop advanced algorithms that incorporate adaptive tuning and robust convergence diagnostics.

e Enhance data quality by developing better experimental and measurement protocols, particularly in fields such as
systems biology and structural engineering.

e Standardise evaluation protocols across benchmarks and real-world cases to enable fair comparisons and
reproducibility.

e Integrate visualisation tools into optimisation frameworks to provide insights into the decision-making process and
to explain convergence behaviour.

o Foster interdisciplinary collaboration to build a comprehensive repository of benchmark problems that reflect the
diversity and complexity of real-world applications.

These recommendations aim to bridge the gap between artificial benchmark environments and the multifaceted realities of real-
world systems.

7. Conclusion

Optimisation remains an indispensable tool in numerous fields, driving innovations in engineering design, systems biology,
control systems, and beyond. This article has provided a detailed comparative analysis of benchmark optimisation problems
and real-world optimisation applications. Here is a summary of the key insights:

e Distinct Characteristics: Benchmarks offer well-defined, noise-free environments with known optima, while real-
world applications involve complex, noisy data and parameter uncertainties.

e Mathematical Formulations: Benchmark objective functions, such as those based on Derringer’s desirability
functions, can be mathematically rigorous and serve as prototypes for developing optimisation strategies.

e Real-World Applications: Applications such as vehicle dynamics ABS optimisation, finite element model updating,
and crane-load control not only highlight the practical utility of optimisation algorithms but also expose new
challenges related to nonlinearity and constraint handling.

e Performance Evaluation: Metrics such as convergence speed, error reduction, and robustness are critical.
Comparative analyses reveal that while transferred parameter settings can enhance performance, additional tuning is
often needed in practical scenarios.

e Open Challenges: The main hurdles include data quality issues, algorithm robustness, identifying and mitigating
convergence problems, and the need for dynamic, multiobjective integration techniques.

e Future Directions: Research must focus on adaptive algorithms, enhanced visualisation methods, standardisation of
benchmarks, and cross-disciplinary integration to better reflect real-world conditions.

The following bullet list encapsulates the main findings:
7.1. Benchmark Problems

e Provide a framework to test fundamental algorithm performance under controlled conditions.
e Utilise synthetic data with defined objective functions to measure convergence and robustness.
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7.2. Real-World Applications

e Present additional complexities such as noisy data, multiobjective constraints, and dynamic uncertainties.
e Require careful tuning of algorithm parameters and validation against experimental measurements.

7.3. Comparative Insights

e Robust optimisation in real-world settings demands a balance between algorithm parameterisation based on
benchmarks and dynamic adaptations to real data.

7.4. Research Challenges

e  Future research should address model uncertainty, inadequate data quality, and the need for verification tools in high-
dimensional spaces.

7.5. Recommendations

e Adapt algorithms through continuous parameter updates, integrate interactive visualisation tools, and pursue
interdisciplinary benchmarking studies to standardise practices.

In conclusion, while benchmark optimisation problems provide valuable insights into algorithm performance, the true test of
an optimiser lies in its application to real-world challenges. Addressing the issues discussed will be pivotal in developing
optimisation algorithms that are both theoretically sound and practically effective. Continued research and collaboration across
disciplines are essential to bridge this gap and drive future advancements in optimisation science.
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